On a conjecture of Stanley on Jack symmetric functions

نویسنده

  • Kazuhiko Koike
چکیده

Koike, K., On a conjecture of Stanley on Jack symmetric functions, Discrete Mathematics 115 (1993) 211-216. The Jack symmetric function J,(x; G() is a symmetric function with interesting properties that J,(x; 2) is a spherical function of the symmetric pair (GL(n, FQ O(n, [w)) and that J,(x; 1) is the Schur function S,(x). Many interesting conjectures about the combinatorial properties of J,(x;cc) are given by Stanley (1989). In this paper we give an affirmative answer to one of his conjectures. 0. Introduction In [6] Stanley gave a series of interesting conjectures concerning Jack symmetric functions. In this paper we give an affirmative answer to one of his conjectures, which is as follows. Conjecture 0.1. Here J,(x;a) is the Jack symmetric function, with parameter a corresponding to a partition 1” (see Section 1 and also [6] for the precise definition) and SA(x) is the Schur function corresponding to a partition I and (a),:= a(a 1) (a 2) ... (a r + 1) denotes the lower factorial. Correspondence to: Kazuhiko Koike, Department of Mathematics, Aoyama Gakuin University, Setagaya-ku, Tokyo 157, Japan. * Partially supported by Grant Aid for Scientific Research. 0012-365X/93/$06.00

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A positivity conjecture for Jack polynomials

We present a positivity conjecture for the coefficients of the development of Jack polynomials in terms of power sums. This extends Stanley’s ex-conjecture about normalized characters of the symmetric group. We prove this conjecture for partitions having a rectangular shape.

متن کامل

Affine Stanley Symmetric Functions

We define a new family F̃w(X) of generating functions for w ∈ S̃n which are affine analogues of Stanley symmetric functions. We establish basic properties of these functions such as their symmetry and conjecture certain positivity properties. As an application, we relate these functions to the k-Schur functions of Lapointe, Lascoux and Morse as well as the cylindric Schur functions of Postnikov. ...

متن کامل

AFFINE STANLEY SYMMETRIC FUNCTIONS By THOMAS LAM

We define a new family F̃w(X) of generating functions for w ∈ S̃n which are affine analogues of Stanley symmetric functions. We establish basic properties of these functions including symmetry, dominance and conjugation. We conjecture certain positivity properties in terms of a subfamily of symmetric functions called affine Schur functions. As applications, we show how affine Stanley symmetric fu...

متن کامل

On the Matchings-Jack Conjecture for Jack Connection Coefficients Indexed by Two Single Part Partitions

This article is devoted to the study of Jack connection coefficients, a generalization of the connection coefficients of the classical commutative subalgebras of the group algebra of the symmetric group closely related to the theory of Jack symmetric functions. First introduced by Goulden and Jackson (1996) these numbers indexed by three partitions of a given integer n and the Jack parameter α ...

متن کامل

Unimodal Polynomials Arising from Symmetric Functions

We present a general result that, using the theory of symmetric functions, produces several new classes of symmetric unimodal polynomials. The result has applications to enumerative combinatorics including the proof of a conjecture by R. Stanley.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 115  شماره 

صفحات  -

تاریخ انتشار 1993